

1

Safe At School
6510

Winter 2022

Supervisor: Mony Orbach
Students: Pavel Delenkevych & Koren Weisblat

2

Table of Contents
Table of Figures ... 3

Introduction ... 4

Planning and Design .. 5

Goals .. 7

Project Resources .. 8

Project Languages.. 9

Production Infrastructure .. 10

Project Environment Set-Up .. 11

Preparing Ubuntu Server[1] .. 11

Installing Apache2[1] .. 11

Installing PHP 7.4[1] .. 12

Installing MySQL Database[2] ... 12

Configuring the database .. 13

Database tables scheme .. 15

Configuring SSL[3] ... 16

Code ... 18

Notes ... 21

Website Manual .. 22

Login webpage ... 22

Main webpage ... 23

Send Email ... 23

Presence .. 24

Un-Present Students ... 24

Present Students ... 25

Reset User Password ... 25

Update List ... 26

Reset Presence .. 26

Downloading Readings Log ... 27

Download Emailing Log ... 28

Logout .. 28

Conclusions .. 29

References ... 30

3

Table of Figures
Figure 1 - General system design .. 6

Figure 2 - Demo provided with RFID reader .. 8

Figure 3 - Resources & languages incorporation ... 9

Figure 4 - AWS infrastructure .. 10

Figure 5 – ‘users’ table used for login functionality, ... 15

Figure 6 - scripts and files .. 18

Figure 7 - Main Webpage .. 23

Figure 8 – Empty Students List .. 24

Figure 9 – Un-present Students List .. 24

Figure 10 – Present Students List .. 25

Figure 11 – Reset Password Form ... 25

Figure 12 – RFID Readings Log ... 27

Figure 13 – Emailing Log .. 28

4

Introduction
Tzohar L’tohar is a school for children with special needs, most of them arrive each day by bus.

Thus, the school requires a system to confirm students getting in and out of school at certain

hours and notify the relevant people otherwise.

New improvements in the field of RFID (Radio Frequency Identification) allow the tags to be

read remotely without requiring an active action from the user, thus making it an optimal

identification tool in this case.

The project will focus on creating a POC (Prove Of Concept) of the required system. It contains

both setting the server that hosts the website and collects data from the RFID reader and

programming a user accessible website to process and present the data.

The project was done with corporation from Tzohar L’tohar.

5

Planning and Design
The project main goal is to create a system which allows to confirm students getting in and out

of school and notify the relevant people in case of need.

Therefore, it needed to have the following components – students’ identification means, a

database to contain, manage and process the data, and an application to allow easy access to

the data and send notification, see Figure 1 - General system design

Because of the different disabilities and special needs of the students, the identification mean

needs to be such that will not require the student of any active action. Thus, RFID was chosen,

specifically a long-distance RFID reader with passive RFID tags.

Initially, cloud services such as AWS were considered for both the database and application. But

the GUI provided with those databases has very limited configurations, meaning that as an

application it will allow the users direct access to the database and might be found as complex

and overwhelming.

Therefore, it was decided to use AWS RDS service as a database, and to write the application

personally as a dynamic website. Making it possible to match the application and database

access to the users’ specific needs.

Because the project is a POC, it was set up as a virtual machine using a local DB. However, it is

recommended to implement it at the following Production Infrastructure. Taking this into

consideration the LAMP (Linux-Apache-MySQL-PHP) stack was chosen for the implementation. It

provides an open source, low resources consuming operating system, easily configured, secure,

widely used, open-source web server program, open-source, efficient, well documented

database management tool with a built-in integration tool to AWS RDS and a beginner friendly

backend scripting language.

In addition, the project used Open-SSL to encrypt the communication between the user and the

website, using https protocol instead of http. HTML and CSS were used as the website frontend

languages and Python for background processes such as DB updating, log writing, etc.

Additional information on each of the Project Resources and Project Languages is provided

below. For their integration, see Figure 3 - Resources & languages incorporation.

6

Figure 1 - General system design
The user logs in to a service, which is fed by RFID readings

and allows sending notifications

7

Goals
The project main goal is to create a system which allows to confirm students getting in and out

of school and notify the relevant people in case of need.

Given the chosen design, the below objectives were defined:

• Study and define the future system desired infrastructure to ensure security, scalability,

and reliability.

• Set a secure local dynamic website, which is easy to operate. The site will require user’s

login and define different permissions and data exposure for different users.

• Set a database containing the students details and RFID readings. The DB will be

updated by either the RFID reader or a designated csv file.

• Allow the website user to view relevant data and send emails to addresses in the DB,

notifying them in case of an absent student.

8

Project Resources
Apache 2 HTTP Server

Efficient and extensible server that provides HTTP services in sync with the current HTTP

standards.

Open SSL

Toolkit for general-purpose cryptography and secure communication.

MySQL Database

Open-source relational database management system that allows creation, modification, and

extraction of data.

SR682RFID

A 915MHz radio frequency reader with associated demo program, which allows to burn the

reader with different settings such as pulse period, pulse width, read delay, same id interval etc.

Figure 2 - Demo provided with RFID reader

9

Project Languages
PHP programming language

General-purpose scripting language that can be used to develop dynamic and interactive

websites. Used as the website backend language due to being beginner friendly, easily

integrated with other technologies such as Python and SQL, and performance efficient since her

latest updates.

HTML

Defines the meaning and structure of web content.

CSS

The language used to style an HTML document.

Python3

Interpreted high-level general-purpose programing language, used in the project for database

maintaining, emails sending, logs support, and communication with the RFID reader.

Figure 3 - Resources & languages incorporation

10

Production Infrastructure

The system nature and purpose require for it to be scalable, reliable, and secure. Therefore, it is

recommended to set it in an AWS environment, using the following Amazon cloud services.

AWS RDS

Amazon Relational Database Service is maintained by Amazon. Providing a secure, reliable, and

easily scaled database, that allows integration of common database engines, such as MySQL.

AWS EC2

Amazon Elastic Compute Cloud provides secure, resizable compute capacity in the cloud. Thus,

can be used as a virtual server instance to host the website and different background scripts

maintaining it.

AWS VPC

Amazon Virtual Private Cloud defines and protects the communication between the EC2 and

RDS instances.

AWS SES

Amazon Simple Email Service used to send emails securely, globally and at scale.

Figure 4 - AWS infrastructure
See reference [6]

11

Project Environment Set-Up
The project is a POC and therefore was set locally on a virtual machine using VirtualBox 6.1 and

Ubuntu server 20.04.3 LTS operating system.

Preparing Ubuntu Server[1]

After installing the server and setting up a sudo user,

Ensure everything is up to date on the server:

Now open port 443 (for https), port 80 (for http) and enable Ubuntu Firewall (ufw):

If you choose to only use one of the protocols (http\https), close the unused port.

Installing Apache2[1]

Install Apache using apt:

Confirm Apache is now running with the following command:

You should get an output showing the apache2.service is running and enabled.

sudo apt update

sudo apt upgrade

sudo ufw allow 80

sudo ufw allow 443

sudo ufw enable

sudo apt install apache2

sudo systemctl status apache2

12

Once installed, test by accessing your server’s IP in a browser. You should see a page with an

“Apache2 Ubuntu Default” showing it has been installed successfully.

Installing PHP 7.4[1]

Install php7.4 with some regularly used modules:

Check installation and version:

Restart Apache for the changes to take effect:

Create a phpinfo.php test page:

Test it by accessing the following in your browser, you should see a PHP version 7.4.3 page

listing all of your PHP options. Once you’ve confirmed that PHP is working correctly, delete the

test page.

Installing MySQL Database[2]

Install MySQL Server by running the following command:

When asked if you want to continue with the installation, answer Y and hit ENTER.

Check the installation by running:

http://YOURSERVERIPADDRESS/

sudo apt install php7.4 php7.4-mysql php-common php7.4-cli php7.4-json \

 php7.4-common php7.4-opcache libapache2-mod-php7.4

php --version

sudo systemctl restart apache2

echo ‘<?php phpinfo(); ?>’ | sudo tee -a /var/www/html/phpinfo.php > /dev/null

http://YOURSERVERIPADDRESS/phpinfo.php

sudo apt install mysql-server

mysql --version

13

After installation, the MySQL instance is insecure. Secure it by running the included security

script:

Follow the script instructions for password setting and other security features. The

recommended answer to all the security questions is Y. However, if you want other setting,

enter any other key.

Verify MySQL server is running:

The output should show the service is operational and running:

It is now possible to login to the MySQL interface using:

Configuring the database
Create the new database:

Create a user that will allow the server to access and edit the DB. This user will be used by the

website backend code for database access and manipulation.

For example, the project uses ‘project6510’@’localhost’, because the database and website are

on the same host.

sudo mysql_secure_installation

sudo systemctl status mysql

sudo mysql -u root

create database [database name];

CREATE USER ‘username’@’hostname’;

GRANT ALL PRIVILEGES ON [database name].* TO ‘username’@’hostname’;

FLUSH PRIVILEGES;

14

Change your workspace to the new database:

Continue by creating the appropriate tables to contain the website users, RFID readings records

and the students’ details:

While the RFID readings and students’ tables are updated automatically by processes described

in Code, the website users should be inserted manually to the users’ table.

The table must contain the user admin and at least one other user with a different name.

The admin can see more details and access more functionality on the website, as described in

the Website Manual.

Lastly, configure the trigger which updates the students’ presence according to records inserted

to the RFID readings table:

use [database name];

CREATE TABLE users (user_name VARCHAR(255), password VARCHAR(255));

CREATE TABLE readings (env_time DATETIME(0), sender VARCHAR(255), info

 VARCHAR(255));

CREATE TABLE students (id VARCHAR(255), firstname VARCHAR(255), lastname

 VARCHAR(255), class VARCHAR(255), teacher VARCHAR(255), city VARCHAR(255),

 transport VARCHAR(255), phone VARCHAR(255), email VARCHAR(255), present

 VARCHAR(255));

INSERT INTO users (user_name, password) VALUES (‘admin’, ‘admin’);

INSERT INTO users (user_name, password) VALUES (‘school1’, ‘ab123’);

…

DELIMITER //

CREATE TRIGGER update_presence AFTER INSERT ON readings

 FOR EACH ROW BEGIN

 IF (SELECT present FROM students WHERE id = NEW.info) = "NO" THEN

 UPDATE students SET present = "YES" WHERE id = NEW.info;

 ELSE

 UPDATE students SET present = "NO" WHERE id = NEW.info;

 END IF;

 END //

DELIMITER ;

15

Database tables scheme

Figure 5 – ‘users’ table used for login functionality,
 ‘readings’ & ‘students’ tables for presence check and display

16

Configuring SSL[3]

Follow this section to use https

After getting an SSL certificate by either creating a self-signed one[4] or obtaining a free SSL

certificate issued by a Certification Authority[5] (requires owning a domain), create the

/etc/certificate folder and save both the certificate and private key there:

Configure the Apache SSL parameters, by using the following command:

Type the following basic configuration into the newly created file:

Save and close the file.

Modify the SSL configuration of the Virtual Host:

Set up the ServerAdmin directive by entering your email and add the ServerName directive

followed by your domain or your server's IP address.

Finally, change the path indicated by the SSLCertificateFile and SSLCertificateKeyFile directives,

entering respectively the path of your certificate and private key.

sudo mkdir /etc/certificate

sudo nano /etc/apache2/conf-available/ssl-params.conf

sudo nano /etc/apache2/sites-available/default-ssl.conf

17

After the changes the file should look like this:

Save and close the file.

Configure Apache by enabling the mod_ssl and mod_headers modules:

Enable reading the SSL configuration created earlier:

sudo a2enmod ssl

sudo a2enmod headers

sudo a2enconf ssl-params

18

Enable the default SSL Virtual Host:

Check for syntax errors in Apache configuration files:

If the massage “Syntax OK” appears, proceed by restarting Apache:

Check the secure connection by accessing your server IP through the browser, using HTTPS:

Code
The Code written for the project vary in languages and purpose, most is used for the website

functionality while some for the server maintenance. For simplicity, all the project code files

were saved in the same folder on the virtual machine, as can be seen here:

Figure 6 - scripts and files

Each of the files’ intent and use is described below.

sudo a2ensite default-ssl

sudo apache2ctl configtest

sudo systemctl restart apache2

https://YOURSERVERIPADDRESS/

19

Background1.jpg

The website background picture.

Default-ssl.conf & ssl-params.conf

Both files are used as part of the SSL configuration in Configuring SSL[3].

emailed.log, reading.log & updateList.log

system log files, reading.log and updateList.log are used for debugging listener.py and

listUpdater.py\listUpdaterAuto.py respectively. While emailed.log lists emails sent by the

system, when and to whom, and can be downloaded from the website.

For the scripts which uses those logs to work properly, files by those names should be present in

their folder with suitable permissions to inspect them (the proper permissions appear in Figure

6 - scripts and files).

cleanUp.py

Written in python, the script purpose is to clean old logs entry as well as old RFID readings from

the SQL table, to prevent the server from diminishing its space resources.

The script is set to run every day at 4 AM by ‘crontab’ (Ubuntu built-in task manager) and erase

entries which are older than one year (the time interval was defined by Tzohar L’tohar).

dbConnection.php

Written in PHP, the file defines the website connection to the database and is currently

designed to connect to a local database, meaning defining a new database\database

user\migrating the database to AWS RDS, will require to change the file accordingly.

download.php

Written in PHP, the script enables downloading files from the server using the website. It is

triggered by different buttons on the website and downloads the appropriate file according to

the specific button. For ‘readings.csv’, it triggers a python script, intended to update it from the

database.

home.php

Written in PHP and HTML, it defines the website main page structure and functionality.

homeStyle.css

Written in CSS, it defines the website main page style.

index.php

Written in PHP and HTML, it is the presented webpage when accessing the website and is used

to define login page structure. Initiates login.php once the login details are submitted.

indexStyle.css

Written in CSS, it defines the website login page style.

20

listener.py

Written in python, the script connects to the database and creates a port on which the server

listens for TCP connections, waiting to receive RFID tag numbers. Any number it receives

through a connection on that port is then written to the ‘readings’ SQL table on the database,

together with a timestamp and the IP address of the sender.

The firewall should be edited to allow local network sockets connection by –

The script should be restarted in the background every time the server is restarted by –

listUpdater.py & listUpdaterAuto.py

Written in python, both scripts were used to update the ‘students’ table in the database. But

while listUpdaterAuto.py is set to automatically run every day at 5 AM by ‘crontab’ (Ubuntu

built-in task manager) and replace the current table content with ‘students.csv’, listUpdater.py

is triggered by a button on the website and does not over run the current table ‘present’ column

status.

For those scripts to be successful, a ‘students.csv’ file of the same structure of the ‘students’

database table, should be present in /var/www/html/ with suitable permissions for them to

inspect it (the proper permissions appear in Figure 6 - scripts and files).

login.php

Written in PHP, it defines the login webpage functionality, checks the provided credentials

against the database. If the credentials match an entry on the ‘users’ table in the database, it

grants access to home.php. Otherwise, it returns an appropriate error, allowing the user to

retry.

logout.php

Written in PHP, it defines the website logout sequence. It is triggered by pressing the ‘logout’

button on the website main page and refers the explorer back to index.php.

notify.php

Written in PHP, the scripts check the address provided to it against the database and if it

matches an email address of one of the entries in ‘students’ table on the database, it triggers

notify.py and sends it the same address. Otherwise, it returns an error massage.

The script is initiated by pressing the ‘send email’ button on the website main webpage and gets

the address that is written in the placeholder above the button, before pressing it.

notify.py

Written in python, the script logs in to a Gmail account and sends a preconfigured massage to

the email provided to it. The script should be edited to change the email content.

Sudo /var/www/html/listener.py &

21

A Gmail account was used in the project to prove capability, but the organization that uses the

system should either provide its own exchange server details or AWS SES details.

Google is not going to allow 1-level authentication and therefore using the script with a Gmail

account after May 1st, 2022.

resetPass.php

Written in PHP, the script defines the functionality behind the ‘reset user password’ form. It

checks if the username exists in the ‘users’ table on the database and sets its new password to

the string filled in the ‘new password’ placeholder. Currently it only checks that the user exists,

the password field is not empty, and the retyped password matches the password.

runScript.php

Written in PHP, it is triggered by a button on the website that when pressed also provides it with

the file name to run. For it to work properly the filename provided should be present under

‘/var/www/html/’ and with everyone allowed to execute it. If the file you wish to run by using

this script is in a different location, then the script needs to be edited accordingly.

sqlExportCSV.py

Written in python, the script connects to the database and then exports the content of

‘readings’ table to a file named ‘readings.csv’, overwriting it if one exists. It is triggered by

download.php when provided with filename ‘readings.csv’.

For it to work properly, a file with the name ‘readings.csv’ should be present in /var/www/html/

with suitable permissions for it to edit it (the proper permissions appear in Figure 6 - scripts and

files).

Notes
• Changing the location or name of a script resources requires updating the script

accessing it accordingly.

• Certain scripts are automatically triggered by crontab. To change their schedule use

Afterwards save and exit.

See crontab manual to edit it appropriately[7].

• When the server starts the Apache service needs to be manually started because the

self-signed certificate requires decryption password. Use

And when prompted, type the certificate key you provided in Configuring SSL[3].

• When the server starts the listener.py script should be manually started in the

background, to allow the server to receive and document RFID readings. Use

• In the VM provided with the project whenever a password is required type: project6510

crontab -e

sudo systemctl restart apache2

/var/www/html/listener.py &

22

Website Manual

Login webpage
When the website is accessed, the user is referred to the login page, prompted to provide a

username and password

If the user does not provide the details appropriately a suitable error will appear.

23

Main webpage
The website main page, and users permissions:

Figure 7 - Main Webpage

Send Email
Sends a preconfigured email (by notify.py script) to the address in ‘email address’ placeholder,

and according to the address provided, returns the following massages:

If the address is not in the database, meaning it doesn’t

belong to any student.

If no email address is provided.

Email was sent successfully.

Only

visible to

admin user

24

Presence
If a presence list is empty the user will see the following:

Figure 8 – Empty Students List

Un-Present Students
Shows a list of all the students who are not currently in school:

Figure 9 – Un-present Students List

25

Present Students
Shows a list of the students present at school:

Figure 10 – Present Students List

Reset User Password
Allows the admin user to reset other users passwords:

Figure 11 – Reset Password Form

26

If the user does not fill the form appropriately a suitable error will appear, otherwise he will

receive the massage ‘Password Successfully Reset’.

If no username was provided.

If the password and retyped password do not match.

 If the username does not appear in the database.

When the password is successfully reset.

Update List
Will cause the students list to be updated according to a csv previously provided by an

automatic process, without overwriting their current present statues.

When it finishes the following will appear:

Reset Presence
Will cause the students list to be updated according to a csv previously provided by an

automatic process, overwriting their current present statues.

When it finishes the following will appear:

27

Downloading Readings Log
Will download a csv file containing all the RFID readings in the pass year:

Figure 12 – RFID Readings Log

28

Download Emailing Log
Will download a txt file containing all the emails sent in the pass year:

Figure 13 – Emailing Log

Logout
Logs the user out of the website, redirecting him to the login form.

29

Conclusions
The system answers the goals which were set in the scope of the project, it provides an

automatically computerized way to follow students entering and leaving school, accompanied

by a customized, easy to use GUI.

Moreover, the system was designed in a way that will allow easy integration to production

environment, to allow better security, scalability, and reliability. With a suitable environment

researched and offered to the school.

However, the data used to decide whether a student is present or not is simple, using a single

RFID card reading to switch the student presence status. Such data is not enough to determine

whether the student left\entered or simply came close enough to the reader. Therefore, a more

elaborated system needs to be implemented in order to eliminate such cases, providing more

details regarding the student position and implementing a more precise algorithm to decide

whether or not the student present status should change.

Furthermore, the website was created using mainly PHP and HTML due to their beginner

friendly nature. As such there are many visual aspects as well as user functionality that can be

improved by incorporating other, more advanced web coding languages such as Java Script.

30

References
[1] How to install LAMP stack web server on Ubuntu 20.04 - Tutorial - UpCloud

[2] https://phoenixnap.com/kb/install-mysql-ubuntu-20-04

[3] https://www.arubacloud.com/tutorial/how-to-enable-https-protocol-with-apache-2-on-

ubuntu-20-04.aspx

[4] How To Create a Self-Signed SSL Certificate on Ubuntu 18.04 | ArubaCloud.com

[5] How To Secure Apache with Let's Encrypt on Ubuntu 18.04 | ArubaCloud.com

[6] Tutorial: Create a web server and an Amazon RDS DB instance - Amazon Relational

Database Service

[7] crontab(5) - Linux manual page (man7.org)

[8] Socket Programming in Python (Guide) – Real Python

https://upcloud.com/community/tutorials/installing-lamp-stack-ubuntu/
https://phoenixnap.com/kb/install-mysql-ubuntu-20-04
https://www.arubacloud.com/tutorial/how-to-enable-https-protocol-with-apache-2-on-ubuntu-20-04.aspx
https://www.arubacloud.com/tutorial/how-to-enable-https-protocol-with-apache-2-on-ubuntu-20-04.aspx
https://www.arubacloud.com/tutorial/how-to-create-a-self-signed-ssl-certificate-on-ubuntu-18-04.aspx
https://www.arubacloud.com/tutorial/how-to-secure-apache-with-lets-encrypt-on-ubuntu-18-04.aspx
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/TUT_WebAppWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/TUT_WebAppWithRDS.html
https://man7.org/linux/man-pages/man5/crontab.5.html
https://realpython.com/python-sockets/#echo-server

