Andrew and Erna Viterbi Faculty of Electrical Engineering Electronics Electronics Electronics Electronics Electronics

A Knee Brace for Pressure Reduction in Injured Articulations

Uri Goldsztejn and Yinon Baracassa, Supervised by Yaakov kohai

Introduction

 Articulations in general and the knee in particular are made up of connective tissue which is characterized by a poor recovery capability

Main Advantage

- The system proposed has two separated working states
- Allowing for impact absorption when landing

- Knee surgeries involve several complications and are not a good option in many cases
- In non life-threatening injuries there is usually a long delay between the injury an the surgery.

Goals

- Bridge to surgery
 - Actively remove work load on knee

- Check for signal energy
 - If low go to stand by (save energy)
- Measure :
 - \succ Threshold for g_z
 - \succ Threshold for a_x
 - Average step frequency
- Main
 - > Scan for max of g_z an then max of a_x
 - > ON state
 - > Scan for first min of g_z during ON state

the heel and improved comfort when shock absorption is not needed

Tests

• Step detection

- Low friction was obtained by sanding the #d printed prototype
- Relatively smooth movement was obtained with fast docking velocities
- The system is rigid enough to stay in position during normal walks and even sprints

- Add minimal work to unloaded stages of walk
- Low power consumption

Challenges

- Gait cycle varies between subjects
- System has to be as light as possible
- System should be trainable with little data

Raw Data

Figure 4.19. The complete gait cycle: stance and swing. Walking is a purposeful disturbance in body equilibrium during which alternating leg displacement sustains body weight.

OFF state

System

Conclusions

- We have improved the functionality of the knee brace with a minimal increase in complexity
- Our system is considerably cheaper than inmarket solutions, which is a key advantage for short term use knee braces

Suggestions for the Future

- Add a ball bearing to virtually eliminate friction
- Change hard disk motor for tailored made motor
- Use an Arduino adapter to control de motor instead of two independent circuits connected

• OFF state

- No current flows through the magnet
- The system behaves like a free axis

• ON state

The magnet is activated

The system behaves like a rigid rod, connected in parallel with the knee

through a transistor

Bibliography

Shamaei et al. Design and functional evaluation of a quasi-passive compliant stance control knee– ankle–foot orthosis IEEE Transactions on Neural Systems and Rehabilitation Engineering 22.2 (2014): 258-268.

החממה החברתית לדיור וקהילה social hub for community & housing الدفيئة الاجتماعية للمجتمع المحلّي والمسكن

