Andrew and Erna Viterbi Faculty of Electrical Engineering Electronics Computers Communications

Control Robotics and Machin Learning Lab

החממה החברתית לדיור וקהילה social hub for community & housing الدفيئة الاجتماعية للمجتمع المحلي والمسكن

development of IOT system-based on a network of sensors to detect fires in forests

Mohannad Mruwat and Hussein Hajajri, Supervised by Koby Kohai

Introduction

Due to the increase of fires, which are taking place in forests, the need of systems that are

Detector Smart sense For Temperature Detecting Flame Sensor Module IR Sensor

Simplelink[™] Sub-1 GHz and **Bluetooth® low energy CC1350** wireless MCU LaunchPad[™]

TECHNION Israel Institute of Technology

able to detect fires at early stage, has become of great importance.

- Up till now, there is no solution for detecting fires and avoiding their spread without human's intervention.
- The applied methods are:
 - observation towers.
 - -sanitation: includes removing dead/ dry and ill trees from the forests.

-etc..

Goals

To develop an inexpensive IOT system, which serves as an emergency alarms when a fire starts progressing in a wide open area. The system is built with a net of sensitive units, each unit

High sensitivity IR receiver

Extremely sensitive to wave between 760-1100nm AO, real-time thermistor voltage signal output DO, high / low electric level signal output Analog quantity output Threshold rollover electric level output Threshold adjusted by potentiometer Detection Angle Range: About 60 degrees Power Supply: 0-15 V DC

Development Kit

- The CC1350 wireless MCU contains a 32-bit ARM® Cortex®-M3 processor that runs at 48 MHz as the main processor.
- LaunchPad kit with a Sub-1 GHz and Bluetooth low energy radio for wireless applications with integrated PCB trace antenna
- We use The SimpleLink Sub-1 GHz CC13x0 software development kit (SDK) which provides a comprehensive Sub-1 GHz software package

transmits its location when a fire is detected.

The unit should be ultra low power consumption, so it will be able to have at least 10 years lifetime.

Challenges

- Low-cost price.
- Low-cost maintenance.
- Long life battery (10-15 years).
- Resists environmental factors.
- The possibility of replacing damaged units.
- Enables further extension.
- There is no previous implementation that provides usage templates.

Unit Architecture

CC4000 GPS Module Kit

- **Protocol Communication NMEA**
- Performance Autonomous cold start TTFF of
- 35 seconds in open sky signal conditions
- Autonomous hot start TTFF of ~1 second in open sky signal conditions
- Tracking Accuracy better than 3 meters
- GPS tracking sensitivity -- -162 dBm
- Embedded software Fully integrated GPS
- driver

for the CC1350 wireless MCU .SDK includes the TI 15.4-Stack software, providing an IEEE 802.15.4e/g-based star topology networking solution for Sub-1 GHz band

ZigBee Protocol

• Zigbee is a standards-based wireless technology developed to enable low-cost, lowpower wireless IOT networks.

• A key piece of the Zigbee protocol is its ability to support mesh networking. Zigbee uses a mesh network architecture for communication.

Push-to-fix - Single GPIO activates power

management for active and deep sleep

- Ephemeris data Automatically maintains satellite positioning information, valid for up to 4 hours
- Pulse-per-second (PPS) generator -

Independent output for high precision timing applications with accuracy <100ns (nominal)

Host interface - UART

